From SFU_Public

Jump to: navigation, search

hello

$\pi ={\frac {3}{4}}{\sqrt {3}}+24\int _{0}^{1/4}{{\sqrt {x-x^{2}}}dx}$

${\text{cost}}={\text{base}}\times 2^{{\text{level}}-1}$

$\operatorname {erfc} (x)={\frac {2}{\sqrt {\pi }}}\int _{x}^{\infty }e^{-t^{2}}\,dt={\frac {e^{-x^{2}}}{x{\sqrt {\pi }}}}\sum _{n=0}^{\infty }(-1)^{n}{\frac {(2n)!}{n!(2x)^{2n}}}$