|
|
Line 4: |
Line 4: |
| | | |
| <math>\text{cost}= \text{base} | | <math>\text{cost}= \text{base} |
− | \times 2^{\text{level}-1}</math> | + | \times 2^{\text{level}-1}</math> |
| | | |
− | | + | <br> <math> |
− | <math> | + | |
| \operatorname{erfc}(x) = | | \operatorname{erfc}(x) = |
| \frac{2}{\sqrt{\pi}} \int_x^{\infty} e^{-t^2}\,dt = | | \frac{2}{\sqrt{\pi}} \int_x^{\infty} e^{-t^2}\,dt = |
− | \frac{e^{-x^2}}{x\sqrt{\pi}}\sum_{n=0}^\infty (-1)^n \frac{(2n)!}{n!(2x)^{2n}} | + | \frac{e^{-x^2}}{x\sqrt{\pi}}\sum_{n=0}^\infty (-1)^n \frac{(2n)!}{n!(2x)^{2n}}</math> |
− | </math> | + | |
| + | |
| + | <math>\begin{bmatrix} |
| + | 0 & \cdots & 0 \\ |
| + | \vdots & \ddots & \vdots \\ |
| + | 0 & \cdots & 0 |
| + | \end{bmatrix}</math> |
| + | |
| + | <math> |
| + | \left . \frac{A}{B} \right \} \to X</math> |
| + | |
| + | <math>{\color{Blue}x^2}+{\color{YellowOrange}2x}-{\color{OliveGreen}1}</math> |
| + | |
| + | <math>x=\frac{-b\pm\sqrt{b^2-4ac}}{2a}</math> |
| + | |
| + | <math>\int_a^x \!\!\!\int_a^s f(y)\,dy\,ds |
| + | = \int_a^x f(y)(x-y)\,dy</math> |
| + | |
| + | <math>|\bar{z}| = |z|, |
| + | |(\bar{z})^n| = |z|^n, |
| + | \arg(z^n) = n \arg(z)</math> |
| + | |
| + | <math>\lim_{z\rightarrow z_0} f(z)=f(z_0)</math> |
| + | |
| + | <math>\phi_n(\kappa) = |
| + | \frac{1}{4\pi^2\kappa^2} \int_0^\infty |
| + | \frac{\sin(\kappa R)}{\kappa R} |
| + | \frac{\partial}{\partial R} |
| + | \left[R^2\frac{\partial D_n(R)}{\partial R}\right]\,dR</math> |
| + | |
| + | <math>{}_pF_q(a_1,\dots,a_p;c_1,\dots,c_q;z) |
| + | = \sum_{n=0}^\infty |
| + | \frac{(a_1)_n\cdots(a_p)_n}{(c_1)_n\cdots(c_q)_n} |
| + | \frac{z^n}{n!}</math> |
| + | |
| + | <math>\varpi \varrho \varsigma \varphi</math> |
| + | |
| + | <math>\left \uparrow \frac{a}{b} \right \downarrow \quad \left \Uparrow \frac{a}{b} \right \Downarrow \quad \left \updownarrow \frac{a}{b} \right \Updownarrow</math> |
Revision as of 05:37, 28 May 2010
hello