|
|
Line 48: |
Line 48: |
| | | |
| <math>\left \uparrow \frac{a}{b} \right \downarrow \quad \left \Uparrow \frac{a}{b} \right \Downarrow \quad \left \updownarrow \frac{a}{b} \right \Updownarrow</math> | | <math>\left \uparrow \frac{a}{b} \right \downarrow \quad \left \Uparrow \frac{a}{b} \right \Downarrow \quad \left \updownarrow \frac{a}{b} \right \Updownarrow</math> |
| + | |
| + | *Making this assumption gives <math>1/\tau(\omega) = 1/\tau_0 + \kappa\omega^2/2 \approx 1/\tau_0 \lambda_0\omega^2/\omega_\lambda \Rightarrow \omega_\lambda = 2\lambda_0/\kappa,</math> so that:<math>\lambda(\omega,T) = \frac{\lambda_0}{1 + (\kappa\omega/2\lambda_0)^2 + (T/T_\lambda)^2}.</math> |
Revision as of 20:44, 14 April 2016
hello
- Making this assumption gives so that: